SISTEM PENDUKUNG KEPUTUSAN PRIORITAS PENGERJAAN ORDER MENGGUNAKAN METODE TOPSIS PADA PT SHINWON CHEMICAL PRODUCTS INDONESIA

Salma Fazira Ramadhani 1*, Nuri Wiyono 2, Joni Iskandar 3

¹ Mahasiswa Program Studi Sistem Informasi, Universitas Insan Pembangunan Indonesia ^{2,3} Dosen Tetap, Universitas Insan Pembangunan Indonesia

email: salmafazirara@gmail.com¹, nwiyono.ip@gmail.com², joniiskandar.chaniago@gmail.com³

ABSTRAK

Penentuan prioritas pengerjaan order ialah bagian terpenting dalam setiap kegiatan produksi disuatu perusahaan terutama pada PT Shinwon Chemical Products Indonesia untuk meminimalisir apabila produktivitas pengerjaan order menurun. Namun dalam penentuan prioritas pengerjaan order pada PT Shinwon Chemical Products Indonesia masih dilakukan secara manual dengan tulis tangan kemudian dilakukan input data menggunakan program bantu Ms. Excel, sehingga tidak sedikit mengalami kesalahan-kesalahan dan sulit dalam pencarian data khususnya per-periode. Melihat masalah yang ada, maka diperlukan Sistem Pendukung Keputusan yang bertujuan untuk dapat membantu menentukan prioritas pengerjaan order menggunakan metode TOPSIS (*Technique For Other Reference By Similarity*). Sistem ini dibangun menggunakan bahasa pemrograman PHP (*Hypertext Preprocessor*), software Visual Studio Code sebagai teks editor dan MySQL sebagai database atau tempat penyimpanan data. Metode pengembangan sistem yang digunakan dalam membangun sistem ini yaitu *Waterfall Model*, menggunakan *Uinfied Modeling Language* (UML) sebagai perancangan sistem dan untuk pengujian sistem menggunakan *Black Box Testing*. Hasil dari rancang bangun sistem ini digunakan sebagai pendukung keputusan dalam menentukan prioritas pengerjaan order dengan harapan dapat mempermudah dan meminimalisir kesalahan-kesalahan.

Kata Kunci: Sistem Pendukung Keputusan, Prioritas Order, TOPSIS, PHP, MySQL

PENDAHULUAN

Kehadiran teknologi tidak selalu menjadi ancaman bagi sumber daya manusia di suatu perusahaan, justru dengan teknologi mempermudah pekerjaan manusia meminimalisir kesalahan-kesalahan mungkin terjadi. Salah satu manfaat kemajuan teknologi yang banyak digunakan diberbagai perusahaan adalah sistem pendukung keputusan. Sistem pendukung keputusan membantu manusia dalam memberikan alternatif keputusan berdasarkan kriteria yang

Terdapat beberapa metode dalam sistem pendukung keputusan salah satunya adalah metode Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Metode **TOPSIS** banyak digunakan untuk menyelesaikan permasalahan dalam pengambilan keputusan multikriteria secara praktis yang didasarkan pada konsep bahwa alternatif yang terbaik tidak hanya memiliki jarak terpendek dari solusi ideal positif, tetapi juga memiliki jarak terpanjang dari solusi ideal negatif yang dalam hal ini akan memberikan

rekomendasi pada prioritas pengerjaan order yang sesuai di PT Shinwon Chemical Products Indonesia.

ISSN: 2338-4093

PT Shinwon Chemical Products Indonesia merupakan industri yang bergerak dibidang manufaktur ekspor dan impor. produk yang dihasilkan adalah sepatu. Bagian terpenting dari industri manufaktur adalah proses produksi, ketidaksesuaian dengan jadwal yang telah ditentukan dalam pemesanan bahan baku dapat mengganggu proses produksi, dalam hal ini menjadi masalah bagi Departemen PPIC dalam proses analisa pembuatan schedule export untuk menentukan jadwal pengerjaan order mana yang harus dikerjakan terlebih dahulu karena bahan mentah yang dibutuhkan untuk jalannya produksi tidak terpenuhi sehingga produktivitas pengerjaan order pun menurun.

Penelitian ini bertujuan untuk merancang dan membangun aplikasi sistem pendukung keputusan prioritas pengerjaan

order menggunakan metode TOPSIS pada PT Shinwon Chemical Products Indonesia.

LANDASAN TEORI

Sistem Pendukung Keputusan

Sistem Pendukung Keputusan adalah sistem informasi yang digunakan untuk membantu pengambilan keputusan dalam suatu organisasi atau perusahaan (Sarwandi dkk., pendukung 2023). Sistem keputusan menyediakan informasi, pemodelan, pemanipulasian data (Rinianty & Sukardi, 2018).

Sistem pendukung keputusan digunakan untuk membantu pengambilan keputusan dalam situasi yang semi terstruktur dan situasi yang tidak terstruktur. Sistem pendukung keputusan sebagai kumpulan tools komputer yang terintegrasi mengijinkan yang seorang pengambil keputusan untuk berinteraksi langsung dengan komputer untuk menciptakan informasi yang berguna (Diana, 2018). Sistem Pendukung Keputusan (Decision Support Systems) merupakan teknik pengambilan keputusan dalam situasi semi terstruktur yang berbasis komputer untuk menciptakan informasi yang berguna.

Technique for Other Reference by Similarity to Ideal Solution (TOPSIS)

Technique for Other Reference by Similarity to Ideal Solution (TOPSIS) adalah salah satu metode pengambil keputusan multi kriteria yang memperhitungkan jarak terdekat dan teriauh dari solusi ideal mengidentifikasi solusi dari alternatif yang ada. Metode TOPSIS memiliki komputasi yang cepat dan sederhana (Putra dkk., 2020). Metode TOPSIS mampu melakukan perangkingan terhadap alternatif terpilih (Mubarok dkk.,

Langkah-langkah Metode Topsis

1) Membuat matriks keputusan

$$X = [x_{ij}]$$

Keterangan:

i = baris dari matriks 1,2,3...m

j = kolom dari matriks 1,2,3...n

2) Menentukan matriks keputusan ternormalisasi

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=2}^{m} x_{ij}^2}}$$

Keterangan:

r = normalisasi dari baris dan kolom matriks

ISSN: 2338-4093

x = matriks keputusan yang telah dikonversikan

3) Menghitung matriks keputusan ternormalisasi dan terbobot

yij = wirij

Keterangan:

yij = matriks rating terbobot

wi = bobot rating ke i

rij = matriks hasil ternormalisasi i =

1,2,3...m; dan j = 1,2,3...n

4) Mencari solusi ideal positif A+ dan solusi ideal negatif A-

$$A^+ = (y_1^+, y_2^+, ..., y_n^+);$$

A- =
$$(y_1^-, y_2^-, ..., y_n^-);$$

Dimana:

$$y_{j}^{+} = \begin{cases} max_{i} \ y_{ij; jika j adalah atribut keuntungan} \\ min_{i} \ y_{ij; jika j adalah atribut biaya} \end{cases}$$

$$y_j^- = egin{cases} min_i \ y_{ij;} \ jika\ j\ adalah\ atribut\ keuntungan \\ max_i \ y_{ij;} \ jika\ j\ adalah\ atribut\ biaya \end{cases}$$

5) Mencari jarak dengan solusi ideal positif dan solusi ideal negatif

Jarak antar alternatif Ai dengan solusi ideal positif dapat dirumuskan dengan persamaan:

$$D_i^+ = \sqrt{\sum_{j=1}^n (y_i^+ - y_{ij})^2}$$
; i=1,2,...,m.

Sedangkan jarak antar alternatif Ai dengan solusi ideal negatif dirumuskan dengan persamaan

$$D_i^- = \sqrt{\sum_{j=1}^n (y_{ij} - y_i^-)^2}$$
; i=1,2,...,m.

6) Menentukan nilai preferensi

$$V_i = \frac{D_i^-}{D_i^- + D_i^+}$$
; i=1,2,...,m.

Keterangan:

Vi = kedekatan tiap alternatif terhadap solusi ideal

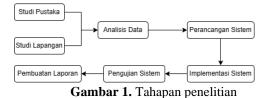
 D_i^+ = jarak alternatif Ai dengan solusi ideal positif

 D_i^- = jarak alternatif Ai dengan solusi ideal negatif

Prioritas Order

Penetapan prioritas *order* mempengaruhi waktu pemrosesan *order*. Prioritas proses ini memperhatikan tingkat kepentingan pesanan dan kesepakatan yang dilakukan (Siagian, 2007). Prioritas sebagai urutan kepentingan yang harus didahulukan (Novia dkk, 2020).

Penelitian Terkait


Penelitian sistem pendukung keputusan sebelumnya juga pernah dilakukan oleh Kori Indah Prastika Wati tahun 2021 yang berjudul Keputusan Prioritas "Sistem Pendukung Pengerjaan Order dengan Metode TOPSIS pada Mebel Kreasi Solo". Dari penelitian keputusan tersebut sistem pendukung menggunakan metode TOPSIS dapat digunakan untuk membantu pemilik mebel menentukan prioritas pemesanan agar proses produksi dapat berjalan dengan lancar dan meminimalkan keterlambatan produksi (Wati, 2021).

Penelitian yang dilakukan oleh Reild Meideant Pratama tahun 2021 yang berjudul "Sistem Pendukung Keputusan Menentukan Prioritas dan Supplier Bahan Baku Menggunakan Metode Topsis dan SAW". Dari penelitian ini didapatkan hasil bahwa pemilik perusahaan merasa dimudahkan dalam pemilihan prioritas bahan baku dan pemilihan supplier pada proses produksi (Pratama, 2021).

METODOLOGI PENELITIAN Desain penelitian

Desain penelitian merupakan kerangka kerja sistematis yang digunakan untuk melaksanakan penelitian serta memberikan gambaran langkah-langkah untuk mendapatkan informasi atau data yang dibutuhkan dalam menjawab seluruh pertanyaan penelitian.

Tahapan penelitian yang dilakukan dalam mencapau tujuan penelitian sebagai berikut:

Metode Pengumpulan Data

Teknik pengumpulan data yang digunakan dalam penelitian ini yaitu:

ISSN: 2338-4093

a) Observasi

Observasi ini dilakukan dengan cara mengamati secara langsung proses penentuan prioritas pengerjaan order dalam produksi produk alas kaki yang dilakukan pada PT Shinwon Chemical Products Indonesia untuk mengetahui kendala apa yang dihadapi serta menganalisa sistem yang sedang berjalan.

b) Wawancara

Peneliti melakukan wawancara dengan bagian yang mengelola penentuan prioritas order yaitu Departemen PPIC (*Production Planning and Inventory Control*), untuk memperoleh informasi bagaimana proses perhitungan prioritas pengerjaan order yang sedang berjalan.

c) Studi Pustaka

Studi pustaka merupakan pengumpulan data dengan mem-pelajari masalah yang berhubungan dengan objek yang diteliti serta bersumber dari buku-buku pedoman, jurnal ilmiah, literatur yang disusun oleh para ahli untuk melengkapi data yang diperlukan dalam penelitian ini.

Metode Pengembangan Sistem

Pada penelitian ini menggunakan metode *SDLC* (*Systems Development Life Cycle*) dengan model *waterfall*. Berikut tahapan-tahapan yang dilakukan dalam pengembangan sistem tersebut sebagai berikut:

a) Analisa Kebutuhan Sistem

Pada tahap ini akan dilakukan analisa terhadap kebutuhan-kebutuhan sistem dan perangkat keras. Kebutuhan sistem terbagi menjadi 2 yaitu: (1) Kebutuhan Fungsional, yang berisi tentang proses-proses apa saja yang nantinya dilakukan oleh system. (2) Kebutuhan *Non* Fungsional, kebutuhan yang tidak secara langsung berkaitan dengan yang ada pada system.

b) Desain

Desain perangkat lunak merupakan proses yang menjadi fokus dalam desain pembuatan program perangkat lunak termasuk struktur data, arsitektur perangkat lunak, representasi antarmuka dan prosedur pengkodean.

c) Pembuatan Kode Program

Pada tahap ini penulis mendesain basis data yang akan digunakan dalam sistem, setelah desain *database* selesai, langkah selanjutnya adalah desain *interface* (antarmuka) sistem dan melakukan pengodingan, sehingga sistem yang dirancang dapat berjalan sesuai dengan fungsi dan tujuannya seperti yang digambarkan pada diagram *UML*.

d) Pengujian Sistem

Pada tahap ini pengujian hanya fokus pada perangkat lunak dari segi *logic* dan fungsional serta memastikan bahwa semua bagian telah diuji dengan melakukan verifikasi dan validasi.

Teknik Pengujian Sistem

Dalam pengujian sistem ini, penulis menggunakan Metode *Black Box Testing. Black box testing* yaitu menguji perangkat lunak dari segi spesifikasi fungsional untuk mengetahui apakah fungsi-fungsi,masukan dan keluaran perangkat lunak sesuai dengan spesifikasi (Wiyono, 2020). Metode pengujian *black box* digunakan untuk menemukan kesalahan dalam beberapa kategori, antara lain fungsi-fungsi yang salah satunya hilang, kesalahan tampilan luar dan kesalahan *output*.

HASIL DAN PEMBAHASAN Perhitungan Metode Topsis

Dalam menentukan prioritas pengerjaan order menggunakan metode topsis diperlukan alternatif dan bobot kriteria untuk melakukan perhitungan yang dapat di lihat seperti berikut.

Pada penelitian ini nilai bobot nilai dari 1 – 5 seperti berikut ini

Tabel 1. Bobot Sub Kriteria

Bobot	Kepentingan
1	Sangat Rendah
2	Rendah
3	Cukup
4	Tinggi
5	Sangat Tinggi

Terdapat 5 kriteria yang digunakan yaitu : jumlah order, ketersediaan bahan baku, kebutuhan bahan baku, target waktu pengerjaan, jumlah pekerja

Tabel 2. Matriks Bobot Kriteria (w)

Kode Kriteria	Nama Kriteria	Tipe	Bobot
C1	Jumlah <i>order</i>	Cost	4

C2	Ketersediaan bahan baku	Benefit	4
СЗ	Kebutuhan bahan baku	Cost	3
C4	Target waktu pengerjaan	Cost	5
C5	Jumlah pekerja	Benefit	5

ISSN: 2338-4093

Tabel 3. Tabel Alternatif

Kode Alter natif	Alter Alternatif	
A1	Model K2-67S	Safety
A2	Model K2-110	Safety
A3	Model KPS-430	Safety
A4	Model YAK-570	Safety
A5	Model K2-14	Fishing
A6	Model K2-10	Fishing
A7	Model LT-107	Fishing
A8	Model YAK-53	Tracking
A9	Model YAK-500D	Tracking
A10	Model YAK-405D	Tracking

Berdasarkan tabel 1 maka diambil sebagai contoh sehingga muncul tabel perbandingan penilaian alternatif dan kriteria seperti berikut ini.

Tabel 4. Membuat matriks perbandingan alternatif dan kriteria

	Kriteria				
Alternatif	C1	C2	C3	C4	C5
A1	1	2	2	4	5
A2	4	4	3	3	2
A3	2	3	2	5	4
A4	3	4	5	4	3
A5	2	4	3	1	2
A6	1	5	5	2	3
A7	3	1	4	4	5
A8	2	5	4	5	2
A9	5	1	2	3	5
A10	4	2	2	1	4

Menentukan matriks keputusan ternormalisasi. Perhitungan untuk mendapatkan nilai matriks ternormalisasi menggunakan formula

$$r_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=2}^{m} x_{ij}^2}}$$

$$x_1$$
= $\sqrt{1^2 + 4^2 + 2^2 + 3^2 + 2^2 + 1^2 + 3^2 + 2^2 + 5^2 + 4^2}$
= 9.4340

$$r_{11} = \frac{1}{9.4340} = 0.1060$$

Berdasarkan perhitungan tersebut maka didapatkan nilai matriks ternormalisasi untuk kriteria Jumlah *order* adalah 0.1060. Proses ini dilakukan untuk semua kriteria. Sehingga terlihat pada tabel berikut ini

Tabel 5. Matriks Keputusan Ternormalisasi

Alter	Kriteria						
natif	C1	C1 C2 C3					
A1	0.1060	0.1849	0.1857	0.3621	0.4272		
A2	0.4240	0.3698	0.2785	0.2716	0.1709		
A3	0.2120	0.2774	0.1857	0.4527	0.3417		
A4	0.3180	0.3698	0.4642	0.3621	0.2563		
A5	0.2120	0.3698	0.2785	0.0905	0.1709		
A6	0.1060	0.4623	0.4642	0.1811	0.2563		
A7	0.3180	0.0925	0.3714	0.3621	0.4272		
A8	0.2120	0.4623	0.3714	0.4527	0.1709		
A9	0.5300	0.0925	0.1857	0.2716	0.4272		
A10	0.4240	0.1849	0.1857	0.0905	0.3417		

Selanjutnya menghitung matriks keputusan ternormalisasi terbobot menggunakan formula yij = wirij

$$y_{11} = w_1 \times r_{11} = 4 \times 0.1060 = 0.4240$$

Proses dilakukan untuk semua kriteria. Sehingga diperoleh hasil seperti tabel berikut.

Tabel 6. Matriks Keputusan Ternormalisasi Terbobot

	1000001							
Alter		Kriteria						
natif	C1	C2	C3	C4	C5			
A1	0.4240	0.7396	0.5571	1.8107	2.1359			
A2	1.6960	1.4792	0.8356	1.3580	0.8544			
A3	0.8480	1.1094	0.5571	2.2634	1.7087			
A4	1.2720	1.4792	1.3927	1.8107	1.2815			
A5	0.8480	1.4792	0.8356	0.4527	0.8544			
A6	0.4240	1.8490	1.3927	0.9054	1.2815			
A7	1.2720	0.3698	1.1142	1.8107	2.1359			
A8	0.8480	1.8490	1.1142	2.2634	0.8544			
A9	2.1200	0.3698	0.5571	1.3580	2.1359			
A10	1.6960	0.7396	0.5571	0.4527	1.7087			

Selanjutnya dilakukan pencarian nilai max dan nilai min sehingga diperoleh nilai seperti pada tabel berikut.

Tabel 7. Solusi Ideal Max dan Solusi Ideal Min

Tabel 7. Boldsi idedi wax dali boldsi idedi wi							
g 1 ·	Kriteria						
Solusi Ideal	C1	C1 C2 C3 C4 C5					
Max	0.4240	1.8490	0.5571	0.4527	2.1359		
Min	2.1200	0.3698	1.3927	2.2634	0.8544		

Mencari jarak dengan solusi ideal positif (D^+) dan solusi ideal negatif (D^-)

a. Mencari D^+

$$D_1^+$$
=
$$\sqrt{\frac{(0.4240 - 0.4240)^2 + (1.8490 - 0.7396)^2 + (0.5571 - 0.5571)^2 + (0.4527 - 1.8107)^2 + (2.1359 - 2.1359)^2}}$$
= 1.7536

ISSN: 2338-4093

b. Mencari D⁻

$$= \sqrt{\frac{(2.1200 - 0.4240)^2 + (0.3698 - 0.7396)^2 + (1.3927 - 0.5571)^2 + (2.2634 - 1.8107)^2 + (0.8544 - 2.1359)^2}$$

$$= 2.3577$$

Proses dilakukan untuk semua Alternatif. Sehingga diperoleh hasil seperti tabel berikut.

Tabel 8. Matriks Jarak (D^+) dan (D^-)

Alternatif	D^+	D -
Sepatu Model K2-67S	1.7536	2.3577
Sepatu Model K2-110	2.0723	1.5939
Sepatu Model KPS-430	2.0464	1.8956
Sepatu Model YAK-	2.0318	1.5288
570		
Sepatu Model K2-14	1.4270	2.5373
Sepatu Model K2-10	1.2779	2.6629
Sepatu Model LT-107	2.2498	1.6260
Sepatu Model YAK-53	2.3262	1.9707
Sepatu Model YAK-	2.4257	1.7777
500D		
Sepatu Model YAK-	1.7410	2.2413
405D		

Mencari nilai preferensi setiap alternatif dengan formula

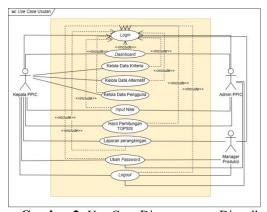
$$V_i = \frac{D_i^{-1}}{D_i^{-1} + D_i^{+}}; i=1,2,...,m.$$

$$V_1 = \frac{2.3577}{2.3577 + 1.7536} = 0.5735$$

Sehingga diperoleh hasil seperti tabel berikut

Tabel 9. Nilai Preferensi

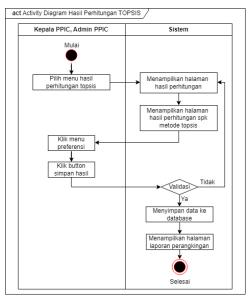
Alternatif	Vektor (V)
Model K2-67S	0.5735
Model K2-110	0.4348
Model KPS-430	0.4809
Model YAK-570	0.4294
Model K2-14	0.6400
Model K2-10	0.6757
Model LT-107	0.4195
Model YAK-53	0.4586
Model YAK-500D	0.4229
Model YAK-405D	0.5628


Langkah terakhir yaitu membuat perangkingan mulai dari nilai tertinggi, dapat dilihat seperti tabel berikut:

Tabel 10. Perangkingan

Rangking	Nama Alternatif	Nilai Preferentif
1	Model K2-10	0.6757
2	Model K2-14	0.6400
3	Model K2-67S	0.5735
4	Model YAK-405D	0.5628
5	Model KPS-430	0.4809
6	Model YAK-53	0.4586
7	Model K2-110	0.4348
8	Model YAK-570	0.4294
9	Model YAK-500D	0.4229
10	Model LT-107	0.4195

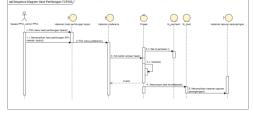
Rancangan Diagram UML


a) Use case Diagram Usulan

Gambar 2. Use Case Diagram yang Diusulkan

Definisi Aktor Use Case

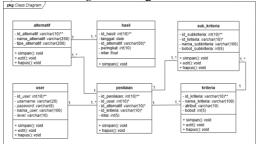
- Kepala PPIC: Pihak yang memiliki hak akses penuh dalam mengelola dan bertanggung jawab seluruh data yang terdapat pada system
- 2) Admin *PPIC*: Pihak yang hanya memiliki hak akses untuk melakukan penilaian dan melihat hasil perhitungan.
- 3) *Manager* Produksi: Pihak yang memiliki hak akses hanya dapat melihat serta mencetak laporan perangkingan.


ISSN: 2338-4093

Gambar 3. Activity Diagram Hasil Perhitungan TOPSIS

Keterangan gambar:

(1)Mulai. (2)Pilih menu hasil perhitungan topsis. (3)Menampilkan halaman hasil perhitungan spk metode topsis. (4)Klik menu preferensi. (5)Klik *button* simpan hasil. (6)Melakukan validasi, jika tidak valid kembali ke halaman hasil perhitungan spk metode topsis, jika valid maka menyimpan data ke *database*. (7)Menampilkan halaman laporan perangkingan. (8)Selesai.


c) Sequence Diagram Menampilkan Hasil Perhitungan TOPSIS

Gambar 4. Sequence Diagram Hasil Perhitungan TOPSIS

b) *Activity Diagram* Menampilkan Hasil Perhitungan TOPSIS

d) Class Diagram Yang Diusulkan

Gambar 5. Class Diagram Sistem Usulan Implementasi Sistem

Setelah tahap analisis dan perancangan selesai, dilakukan implementasi hasil rancangan ke dalam baris kode program dengan menggunakan bahasa pemrograman php. Dibangun sistem berbasis web dengan tampilan berikut:

a) Tampilan Form Login

Gambar 6. Tampilan Halaman Form Login

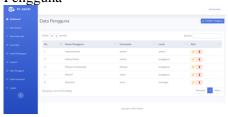
b) Tampilan Halaman Dashboard

DE PT. SWCPI						Absorbes
	1		11		1	
	5		10	NACY .	700s, P0400044	
			1		1	
	Kods	Marea Kriteria	Knike	Nens Alternatif	Stermanne	Nama Panggaria
	CI	Juniah Circler	ART	Sepulsi resdet KZ-67S	Mariya	Chenys Annastarya
	CZ	Ketersedaan Bahan Baku	A010	Septia model 1941-4050	maya	Haya F
	CI	Kebutuhan Bahan Baku	A62	Signity model #2-110	sina	Salma Facina
	CI	Target Wolco Pengerjaan	AE3	Signita model RPS-430		
	CS.	Jumah Pakarja	ADE	Separa model 1846-970		
			ARS	Separa receist 92-14		
			ADD	Signatu model K2-10		
			AB7	Sepata readel UT-107		
			App	Seputa model 590-53		

Gambar 7. Tampilan Halaman Dashboard

c) Tampilan Halaman Kelola Data Kriteria

Gambar 8. Tampilan Halaman Kelola Data Kriteria


d) Tampilan Halaman Kelola Data Alternatif

Gambar 9. Tampilan Halaman Kelola Data Alternatif

ISSN: 2338-4093

e) Tampilan Halaman Kelola Data Pengguna

Gambar 10. Tampilan Halaman Kelola Data Pengguna

f) Tampilan Halaman Input Nilai

Gambar 11. Tampilan Halaman Input Nilai

g) Tampilan Halaman Hasil Perhitungan TOPSIS

Gambar 12. Tampilan Halaman Hasil Perhitungan TOPSIS

KESIMPULAN

Berdasarkan penelitian yang telah dilakukan dapat disimpulkan bahwa Sistem pendukung keputusan prioritas pengerjaan *order* dengan menggunakan metode Topsis dapat memberikan kemudahan bagi

Departemen Planning dalam menentukan prioritas pengerjaan order.

Saran dari penelitian ini adalah dapat dilakukan pengembangan dengan dikombinasikan dengan metode lain sehingga memberikan alternatif yang lebih efisien bagi pengambil keputusan.

DAFTAR PUSTAKA

- Diana. (2018). Metode Dan Aplikasi Sistem Pendukung Keputusan. *Yogyakarta: Deepublish*.
- Mubarok, A., Suherman, H. D., Ramdhani, Y., & Topiq, S. (2019). Sistem Pendukung Keputusan Kelayakan Pemberian Kredit Dengan Metode TOPSIS. *Jurnal Informatika*, *6*(1), 37-46.
- Novia, E. A., Rahayu, W. I., & Prianto, C. (2020). Sistem Perbandingan Algoritma K-Means dan Naive Bayes Untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan. Bandung: Kreatif Industri Nusantara.
- Pratama, R. M.(2020). Sistem Pendukung Keputusan Menentukan Prioritas dan Supplier Bahan Baku Menggunakan Metode TOPSIS dan SAW. Skripsi Sarjana, Yogyakarta: Universitas Islam Indonesia.
- Putra, D. W. T., Santi, S. N., Swara, G. Y., & Yulianti, E. (2020). Metode topsis dalam

sistem pendukung keputusan pemilihan objek wisata. *Jurnal Teknoif Teknik Informatika Institut Teknologi Padang*, 8(1), 1-6

ISSN: 2338-4093

- Rinianty, R., & Sukardi, S. (2018). Sistem pendukung keputusan penerimaan karyawan menggunakan metode saw pada cv. green advertising. *Creative Communication and Innovative Technology Journal*, 11(1), 48-57.
- Sarwandi, L. T. S., Hasibuan, N. A., Sudipa, I. G. I., Syahrizal, M., Alwendi, M., Muqimuddin, B. D. M., ... & Israwan, L. F. (2023). Sistem pendukung keputusan. Graha Mitra Edukasi.
- Siagian, Y. M. (2007). *Aplikasi Supply Chain Management...* Grasindo.
- Wati, K. I. P. (2021). Sistem Pendukung Keputusan Prioritas Pengerjaan Order Dengan Metode Topsis Pada Mebel Kreasi Solo. Surakarta. Skripsi Sarjana, Universitas Muhammadiyah Surakarta.
- Wiyono, N. (2020). Analisa Dan Perancangan Sistem Laporan Harian Hasil Produksi Pada Pt Tokyo Radiator Selamat Sempurna Berbasis Web. *Insan Pembangunan Sistem Informasi dan Komputer* (*IPSIKOM*), 8(1).