PENERAPAN ADVANCED ENCRYPTION STANDARD UNTUK SISTEM LOGIN DAN REGISTRASI PADA SISTEM INFORMASI PENJUALAN (STUDI KASUS:TOKO ILHAM BANJAR)

Imam Fauzy Muldani Rachmat*

Dosen Tetap, Universitas Insan Pembangunan *Penulis Korespondensi: imamfauzi43@unipi.ac.id

ABSTRACT

Data security in sales information systems has become a critical priority in today's digital era. Ilham Banjar Store needs a system that can effectively protect user data, especially in login and registration features, which are vulnerable to security threats. The lack of encryption mechanisms in the current system results in user data, such as passwords, being transmitted in plaintext, increasing the risk of unauthorized access and data modification. Therefore, this study aims to enhance the security of the Ilham Banjar Store's sales information system by implementing the Advanced Encryption Standard (AES) 256-bit Cipher Block Chaining (CBC) method in the login and registration processes. The research method used is Research and Development (R&D), consisting of stages such as literature review, needs analysis, system design, implementation, testing, evaluation, and analysis. The implementation of the Advanced Encryption Standard (AES) involves the encryption processes of AddRoundKey, SubBytes, ShiftRows, and MixColumns, and the decryption processes are the inverse of these encryption steps. Testing includes measuring encryption and decryption times as well as verifying data integrity using HMAC (Hash-Based Message Authentication Code). The research results show that the performance testing indicates encryption and decryption times remain within acceptable limits, and the encrypted and decrypted data maintain their integrity. Thus, the new system meets both security and performance requirements.

Keywords: Cryptography, AES, HMAC, Encryption, Decryption

PENDAHULUAN

Keamanan data pada sistem informasi penjualan menjadi aspek yang penting untuk diperhatikan, terutama di era digital saat ini dimana ancaman terhadap data semakin meningkat. Toko Ilham Banjar membutuhkan sistem yang dapat melindungi data pengguna secara efektif. Fungsi login dan registrasi merupakan bagian penting dari sistem ini, karena berfungsi untuk mengidentifikasi dan mengotentikasi pengguna. Fitur login dan registrasi pada sistem informasi penjualan yang sedang berjalan pada Toko Ilham Banjar masih rentan terhadap berbagai ancaman keamanan karena tidak ada proses enkripsi dan dekripsi yang dirancang untuk melindungi pengguna, sehingga data pengguna, seperti kata sandi, dikirimkan dalam bentuk *plaintext*.

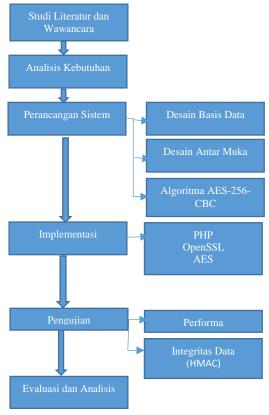
Oleh karena itu, kurangnya mekanisme enkripsi, data yang dikirimkan berpotensi dapat diubah atau dicuri oleh penyerang yang melakukan komunikasi antara pengguna dan server. Selain itu, data yang dikirim dan disimpan tanpa enkripsi tidak dapat memverifikasi keasliannya, sehingga rentan terhadap modifikasi yang tidak sah.

e-ISSN: 2686-6382

Penelitian sebelumnya yang relevan dilakukan oleh Laila Mustika dengan judul penelitian yaitu Implementasi Algoritma AES Untuk Pengamanan *Login* Dan Data Customer Pada E-Commerce Berbasis Web. Pada penelitian tersebut panjang kunci yang digunakan sebesar 128 bit, perancangan dibuat menggunakan bahasa pemograman PHP dan *database MySO* (Mustika 2020).

Penelitian yang dilakukan Muhammad Riyan Andriyanto dan Pristi Sukmasetya berjudul Penerapan Algoritma Advanced Encryption Standard (AES) Untuk Keamanan Data Transaksi Pada Sistem E-Marketplace menghasilkan penelitian yang menerapkan algoritma dengan ukuran kunci 256-bit untuk keamanan data transaksi pengguna. Penelitian ini bertujuan untuk menciptakan sistem e-marketplace yang dapat mengelola proses transaksi jual beli bibit buah dan tanaman di Desa Sriwedari. Hasil dari penelitian tersebut merupakan data transaksi pembayaran yang tersimpan di dalam *database* berupa data tersandi (*chipertext*) yaitu hasil dari proses enkripsi data asli yang telah di input oleh pengguna (*plaintext*) (Andriyanto and Sukmasetya 2022).

Penelitian yang dilakukan oleh Yendi Putra yang berjudul Meningkatkan Keamanan Menggunakan Algoritma Advanced Encryption Standard (AES) terhadap Serangan Cross Site Scripting menghasilkan penelitian yang berfokus pada penerapan algoritma AES dan pengujian kerentanan menggunakan Aplikasi Acunetix pada website *elearning* SMK maritim nusantara. Penelitian tersebut algoritma AES diterapkan pada Secret Key Token yang dibuat menggunakan JWT (Json Web Token) (Putra, Yuhandri, and Sumijan 2021)


Berdasarkan penelitian sebelumnya maka penelitian ini bertujuan untuk mengatasi masalah-masalah pada sistem berjalan dengan menerapkan metode Advanced Encryption dalam proses login dan registrasi Standard pada sistem informasi penjualan Toko Ilham Banjar. Selain itu, penelitian ini akan pengembangan sistem melibatkan menggunakan metode Research Development yang mencakup implementasi enkripsi dan dekripsi data menggunakan AES proses enkripsi yang terdiri dari proses Subbytes, ShiftRows, MixColumns, AddRoundKey (Permana and Jaelani 2020). Ukuran kunci yang digunakan 256 bit serta menggunkan CBC (Cipher Block Chaining) vang bekerja efektif untuk meningkatkan keamanan dalam menyediakan kerahasiaan data yang tinggi dan otentikasi (Afsari et al. 2022). Selain itu penelitian ini membandingkan sistem berialan dengan sistem baru setelah menerapkan AES-256-CBC. Sebelum diintegrasikan fitur login dan registrasi dibuat dalam bentuk prototype menggunakan kode PHP dengan fungsi OpenSSL (Open Source Secure Sockets Layer) yang merupakan toolkit kriptografi open-source pada fungsi PHP vang menyediakan implementasi dari protokol Transport Layer Security (TLS). Selain itu, pengembangan fitur login dan registrasi diikuti dengan pengujian performa untuk memastikan bahwa sistem login dan registrasi yang baru tetap responsif dan dapat diandalkan. Setelah

menerapkan AES-256-CBC Pengujian performa tersebut berdasarkan panjang data dan iterasi *login*, sedangkan pengujian integritas data dengan menerapkan HMAC (*Hash-Based Message Authentication Code*)

e-ISSN: 2686-6382

METODOLOGI PENELITIAN

Penelitian ini dilakukan pada sistem informasi penjualan toko Ilham Banjar dengan metode Research and Development (R&D) yang digunakan untuk menghasilkan produk tertentu, dan menguji keefektifan produk tersebut (Sati et al. 2023). Metode penelitian tersebut mencakup beberapa tahapan penting dalam pengembangan dan pengujian sistem *login* dan registrasi algoritma Advanced menggunakan Encryption Standard (AES) dengan ukuran kunci 256 bit dalam mode Cipher Block Chaining (CBC). Berikut adalah tahapan Research and Development.

Gambar 1. Tahapan Penelitian *Research* and *Development*

1. Studi Literatur

Tahap ini melibatkan pengumpulan dan kajian literatur yang relevan dengan topik penelitian. Studi literatur ini bertujuan untuk memahami konsep dasar, algoritma enkripsi AES, dan mode operasinya, serta untuk meninjau penelitian-penelitian sebelumnya yang terkait dengan penerapan enkripsi pada sistem *login* dan registrasi.

2. Analisis Kebutuhan

Tahap ini mencakup analisis terhadap sistem informasi penjualan yang sedang berjalan di Toko Ilham Banjar. Analisis ini bertujuan untuk mengidentifikasi kelemahan-kelemahan sistem yang ada, terutama dalam hal keamanan data pengguna.

3. Perancangan Sistem

Pada tahap ini, perancangan sistem login dan registrasi yang menggunakan enkripsi AES-256-CBC dilakukan. Perancangan mencakup perancangan basis data yaitu merancang tabel users untuk menyimpan data pengguna yang terenkripsiMerancang halaman login dan registrasi yang user-friendly dan aman. Kemudian perancangan Proses Enkripsi dan Dekripsi vaitu menentukan alur proses enkripsi dan dekripsi vang diimplementasikan dalam kode PHP.

4. Implementasi

Tahap implementasi melibatkan pengkodean sistem berdasarkan desain yang telah dibuat. Implementasi dilakukan menggunakan bahasa pemrograman PHP dan *database MySQL*. Kode untuk enkripsi dan dekripsi dengan AES-256-CBC diimplementasikan pada fungsi *login* dan registrasi.

5. Pengujian

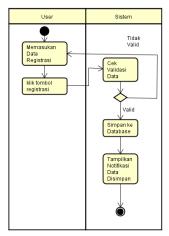
Tahap pengujian dilakukan untuk memastikan bahwa sistem yang dikembangkan memenuhi kebutuhan keamanan dan performa yang diharapkan. Pengujian tersebut terdiri dari pengujian integritas data dan pengujian performa. Pengujian integritas data bertujuan untuk memastikan data yang didekripsi sama dengan data asli yang dienkripsi, menggunakan HMAC (Hash-Based Message Authentication Code) untuk verifikasi. Oleh karena itu, HMAC (Hash-Based Message Authentication Code) dapat digunakan sebagai metode untuk memverifikasi integritas data yang dikirim antar sistem. HMAC menggunakan kunci kriptografi dan fungsi hash untuk membangun kode autentikasi pesan, yang kemudian ditambahkan ke akhir pesan yang ditujukan penerima.(Dalimunthe, Reza, Marzuki 2022). Pengujian performa bertujuan untuk mengukur waktu yang dibutuhkan untuk

proses enkripsi dan dekripsi pada saat registrasi dan *login*, dinyatakan dalam milidetik.

e-ISSN: 2686-6382

6. Evaluasi dan Analisis

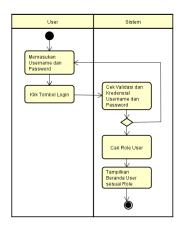
Hasil pengujian dievaluasi untuk memastikan bahwa sistem vang baru kebutuhan keamanan memenuhi dan performa. Analisis dilakukan untuk membandingkan sistem sebelum dan sistem baru setelah menerapkan enkripsi AES-256-CBC, untuk melihat peningkatan keamanan dan kinerja yang dicapai.


HASIL DAN PEMBAHASAN

A. Analisis Kebutuhan

Analisis Kebutuhan Sistem yang berjalan di Toko Ilham Banjar bertujuan untuk mengidentifikasi kelemahan-kelemahan sistem yang ada, terutama dalam hal keamanan data pengguna. Pada tahapan ini untuk mengetahui proses yang sedang dibuatkan berjalan maka model menggunakan activity diagram. Activity diagram tersebut menunjukkan aktivitas sistem dan aktor yang berinteraksi mulai dari aktivitas dimulai, keputusan apa saja, dan hingga aktivitas selesai (Rachmat 2022). Berikut adalah poin-poin utama dari analisis kebutuhan:

1. Proses Registrasi:


Pengguna baru memasukkan registrasi berupa informasi pribadi (nama, alamat email, nomor telepon) dan membuat kata sandi. Data yang dimasukkan divalidasi apakah data yang dimasukan valid atau tidak , jika valid maka dikirim ke server dalam bentuk plaintext. Pada aktivitas validasi seperti field yang wajib diisi, ketentuan jumlah panjang password minimal 6 karakter, dan format email. Kemudian server menvimpan data pengguna pada database tanpa enkripsi sedangkan apabila tidak valid maka user dapat menginput data registrasi kembali.

Gambar 2. Registrasi Sistem berjalan

2. Proses Login:

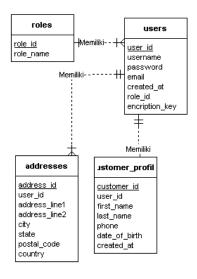
Pengguna memasukkan alamat email dan kata sandi. Kemudian data *login* dikirim ke server dalam bentuk *plaintext*. Server memvalidasi dan memverifikasi kredensial dengan mencocokkan data yang disimpan di *database*.

Gambar 3. Login Sistem berjalan

Kelemahan Sistem Berjalan:

Pengiriman data *login* seperti *password* masih dalam bentuk *plaintext*. Data pribadi dan kata sandi pengguna dikirim melalui jaringan tanpa enkripsi, sehingga rentan terhadap ancaman *man-in-the-middle* (MitM) *attack*. Selain itu, data yang dikirim dan disimpan tidak dapat diverifikasi keasliannya, sehingga rentan terhadap modifikasi oleh pihak yang tidak sah.

B. Perancangan Sistem

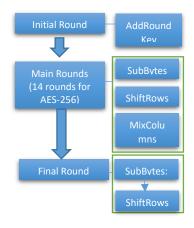

Pada tahap ini, dilakukan perancangan sistem *login* dan registrasi menggunakan

enkripsi AES-256-CBC. Perancangan ini mencakup beberapa aspek penting:

e-ISSN: 2686-6382

1. Desain Basis Data:

Pada perancangan basis data, diagram yang digunakan pada tahapan ini adalah menggunakan class diagram yang menggambarkan digunakan untuk struktur dan hubungan antara objekyang terlibat dalam sistem obiek (Rachmat 2023). Berikut adalah class diagram untuk form login dan registrasi yang akan diusulkan dengan menerapkan AES-256-CBC.

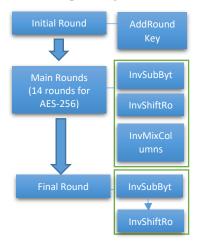


Gambar 4. *Class Diagram* Form *Login* dan Registrasi yang diusulkan

Pada perancangan class diagram untuk sistem baru, terdapat penambahan atribut encryption key tabel Tujuan pada users. dari penambahan ini adalah untuk memastikan setiap pengguna memiliki enkripsi yang unik melindungi data sensitif mereka. Proses enkripsi dan dekripsi menggunakan kunci ini dengan algoritma AES-256-CBC, yang memberikan tingkat keamanan tinggi untuk sistem login dan registrasi. Proses enkripsi dan dekripsi menggunakan kunci tersebut dengan algoritma AES-256-CBC, menyediakan tingkat keamanan yang tinggi untuk sistem login dan registrasi.

2. Desain Proses Enkripsi dan Dekripsi:

Tahap ini membuat desain proses enkripsi dan dekripsi yang akan diimplementasikan dalam kode PHP pada sistem *login* dan registrasi di Toko Ilham Banjar. Langkah-langkah utama meliputi pembuatan kunci enkripsi unik untuk setiap pengguna, enkripsi kata sandi sebelum disimpan dalam basis data, dan dekripsi kata sandi saat proses *login*.



Gambar 5.Desain Proses Enkripsi

Berdasarkan tahapan proses enkripsi, sebelum melakukan enkripsi, langkah pertama adalah penggunaan initial vektor untuk generate key. Initial vektor digunakan sebagai input beserta kunci enkripsi, untuk menghasilkan kunci yang akan digunakan dalam proses enkripsi. Setelah itu, proses dilanjutkan dengan tahapan Initial Round di mana menggunakan AddRoundKev dalam fungsi openssl_encrypt. Pada tahap ini, setiap byte dalam plaintext di-XOR dengan kunci enkripsi yang dihasilkan dari initial vektor. Kemudian, dilanjutkan dengan tahapan Main Rounds, dimana fungsi openssl encrypt secara otomatis menangani urutan langkah-langkah enkripsi (SubBytes, ShiftRows. MixColumns. AddRoundKey) sesuai dengan standar AES-256-CBC. SubBytes mengubah byte dalam blok menggunakan S-box, **ShiftRows** melakukan pergeseran baris dalam blok ke kiri sesuai aturan AES, dan MixColumns memodifikasi kolom-kolom dalam blok menggunakan transformasi linier. Pada tahap *AddRoundKey*, blok *plaintext* di-XOR dengan bagian dari kunci enkripsi untuk setiap ronde. Terakhir, pada tahap Final

Round, proses **MixColumns** tidak dilakukan. Fungsi openssl encrypt hal dengan menangani tersebut mengimplementasikan SubBytes, ShiftRows, dan AddRoundKey. Pada Final Round dimana MixColumns tidak dilakukan dengan tujuan untuk menjaga efisiensi tanpa mengorbankan keamanan.

e-ISSN: 2686-6382

Gambar 6. Desain Proses Dekripsi

Sebelum melakukan tindakan dekripsi, langkah awalnya adalah menggunakan initial vektor yang digunakan sebagai input dengan kunci enkripsi untuk menghasilkan kunci yang dibutuhkan proses dekripsi. dalam Langkah berikutnya adalah tahap Initial Round, di mana AddRoundKey digunakan dalam fungsi openssl decrypt. Pada tahap ini, setiap byte dalam ciphertext di-XOR dengan kunci enkripsi yang berasal dari initial vektor. Selanjutnya, dilanjutkan dengan tahapan Main Rounds, di mana urutan langkah-langkah dekripsi (InvShiftRows, InvSubBytes, dan AddRoundKey) ditangani secara otomatis oleh fungsi openssl decrypt sesuai AES-256-CBC. dengan standar melakukan pergeseran *InvShiftRows* baris dalam blok ke arah kanan sesuai AES, dengan aturan *InvSubBytes* mengubah kembali byte dalam blok menggunakan tabel substitusi inversi (Inverse S-box), dan AddRoundKey melakukan operasi XOR dengan kunci enkripsi yang berbeda untuk setiap ronde. Pada tahap Final Round, hanya InvShiftRows, InvSubBytes, dan

AddRoundKey yang dilakukan, tanpa melibatkan langkah *MixColumns*.

C. Implementasi

Tahap implementasi melibatkan pengkodean sistem berdasarkan desain yang Implementasi dilakukan telah dibuat. menggunakan bahasa pemrograman PHP dan database MySQL. Kode untuk enkripsi dan dekripsi dengan AES-256-CBC diimplementasikan pada fungsi login dan registrasi. Berikut adalah cuplikan penerapan AES pada PHP.

Tabel 1. Fungsi Enkripsi dan Dekripsi

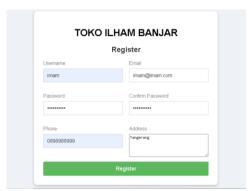
Tabel 1. Fungsi Enkripsi dan Dekrips				
Nama	Cuplikan Kode			
Fungs				
i				
Enkrip	function			
si	encryptData(\$data, \$key)			
	{			
	\$iv =			
	openssl_random_pseudo			
	_bytes(openssl_cipher_iv			
	_length('aes-256-cbc'));			
	\$encrypted =			
	openssl_encrypt(\$data,			
	'aes-256-cbc', \$key, 0,			
	\$iv);			
	return			
	base64_encode(\$encrypt			
	ed . '::' . \$iv);			
	}			
	// Saat registrasi,			
	menghasilkan kunci			
	enkripsi dan menyimpan			
	data terenkripsi			
	\$username =			
	\$_POST['username'];			
	\$password =			
	\$_POST['password'];			
	\$email =			
	\$_POST['email'];			
	\$encryption_key =			
	bin2hex(openssl_random			
	_pseudo_bytes(32));			
	\$encrypted_password =			
	encryptData(\$password,			
	<pre>\$encryption_key);</pre>			

```
Dekrip
         function
         decryptData($data, $key)
si
           list($encrypted_data,
         $iv) = explode('::',
         base64 decode($data),
           return
         openssl decrypt($encryp
         ted_data, 'aes-256-cbc',
         $key, 0, $iv);
         }
         //pada saat login
         if ($result->num rows >
              suser = sresult
         >fetch assoc();
         $encrypted_password =
         $user['password'];
              $encryption key =
         $user['encryption key'];
         $decrypted_password =
         decryptData($encrypted
         password,
         $encryption_key);
             if ($password ===
         $decrypted_password) {
                echo "Login
         successful!";
               //masukke baranda
         user
              } else {
                echo "Incorrect
         password!";
           } else {
             echo "User not
         found!":
```

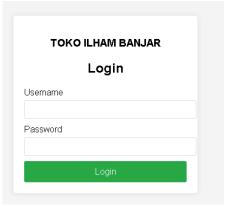
e-ISSN: 2686-6382

Fungsi encryptData dirancang untuk mengenkripsi data menggunakan algoritma AES-256-CBC. Pertama, fungsi ini menghasilkan sebuah inisialisasi vektor (IV) yang dihasilkan secara acak menggunakan openssl_random_pseudo_bytes, yang ukurannya sesuai dengan panjang IV untuk AES-256-CBC. Kemudian, data yang akan dienkripsi dienkripsi menggunakan openssl_encrypt_dengan_algoritma_AES-

256-CBC, kunci enkripsi yang diberikan, dan IV yang baru dibuat. Data terenkripsi dan IV tersebut digabungkan dan dikodekan menggunakan base64_encode untuk memastikan bahwa data yang dihasilkan aman untuk disimpan atau ditransmisikan dalam bentuk string.


Saat proses registrasi pengguna, sistem menerima input dari form registrasi, yaitu username, password, dan email. Kunci enkripsi yang unik untuk setiap pengguna dihasilkan menggunakan bin2hex openssl_random_pseudo_bytes untuk membuat string acak sepanjang 32 byte (256 bit), yang merupakan panjang kunci untuk AES-256. Password yang dimasukkan oleh pengguna dienkripsi dengan menggunakan encryptData, dengan kunci enkripsi yang baru dihasilkan. Hasil dari proses enkripsi (password kemudian disimpan terenkripsi) database bersama dengan username, email, kunci enkripsi, dan role id melalui query SOL. Kunci enkripsi ini juga disimpan dalam database agar dapat digunakan kembali saat proses dekripsi data.

Fungsi decryptData bertujuan untuk mendekripsi data yang telah dienkripsi AES-256-CBC. menggunakan algoritma Fungsi ini pertama-tama mengambil data yang dikodekan dalam base64 dan memisahkannya menjadi dua bagian: data terenkripsi dan inisialisasi vektor (IV). Setelah dipisahkan, openssl decrypt digunakan untuk mendekripsi dengan algoritma AES-256-CBC menggunakan kunci enkripsi dan IV yang sama seperti pada saat proses enkripsi. Selama proses login, sistem menerima input dari form login dan memeriksa keberadaan pengguna dalam database berdasarkan username diberikan. Jika pengguna ditemukan, data terenkripsi (password terenkripsi) dan kunci enkripsi diambil dari database. Data password terenkripsi kemudian didekripsi menggunakan fungsi decryptData dengan kunci enkripsi yang sesuai. Setelah mendapatkan password yang didekripsi, sistem membandingkannya dengan password yang dimasukkan oleh pengguna. Jika password yang didekripsi cocok dengan password yang diberikan, login berhasil dan pengguna diarahkan ke halaman beranda. Jika tidak, pesan "Incorrect password!" kesalahan ditampilkan. Jika pengguna tidak ditemukan


dalam database, pesan "*User not found*!" akan ditampilkan.

e-ISSN: 2686-6382

Berikut adalah tampilan registrasi dapat disajikan pada gambar 7 dan untuk tampilan *login* pada gambar 8..

Gambar 7. Form Registrasi

Gambar 8. Form Login

D. Pengujian

Tahap pengujian dilakukan untuk memastikan bahwa sistem yang dikembangkan memenuhi kebutuhan keamanan dan performa yang diharapkan. Pengujian meliputi:

1. Pengujian performa bertujuan untuk mengukur waktu yang dibutuhkan untuk proses enkripsi dan dekripsi pada saat registrasi dan login. Pengukuran dilakukan dalam milidetik untuk memastikan sistem responsif dan efisien. Pada pengujian performa bagian yang diukur berdasarkan panjang data. Oleh karena itu, mengukur performa sistem dengan variasi panjang data membantu untuk mengetahui bagaimana sistem merespon terhadap berbagai ukuran data yang berbeda. Kemudian iterasi login, dengan mengukur performa sistem dengan variasi jumlah iterasi *login*, maka dapat memahami bagaimana kinerja sistem berubah seiring dengan meningkatnya jumlah percobaan *login* yang gagal. Berikut adalah tabel pengujian performa dengan panjang kunci 256 bit

Tabel 2.Pengujian Performa

Panja	Iterasi	Waktu	Waktu
ng	Login	Enkripsi(Dekripsi(
Data	Login	ms)	ms)
8	1	0.026	0.008
16	1	0.005	0,005
32	1	0.004	0,004
64	1	0.004	0,006
128	1	0,005	0,007
8	2	0,008	0,007
16	2	0,008	0,009
32	2	0,007	0,01
64	2	0,008	0,01
128	2	0,008	0,01
8	3	0,011	0,009
16	3	0,011	0,011
32	3	0,011	0,012
64	3	0,011	0,012
128	3	0,011	0,009
8	4	0,014	0,011
16	4	0,014	0,012
32	4	0,014	0,012
64	4	0,016	0,012
128	4	0,015	0,012

Berdasarkan hasil pengujian peforma, dapat disimpulkan waktu enkripsi dan dekripsi cenderung meningkat seiring dengan bertambahnya panjang data. Terdapat fluktuasi dalam waktu enkripsi dan dekripsi pada setiap iterasi login, tetapi fluktuasi tersebut relatif kecil. Peningkatan iterasi login cenderung meningkatkan waktu enkripsi dan dekripsi secara proporsional. Walaupun terjadi fluktuasi, waktu enkripsi dan dekripsi pada umumnya tetap dalam rentang yang wajar dan dapat diterima. Dengan demikian, berdasarkan hasil pengujian tersebut, AES tetap menunjukkan performa yang baik dan dapat diandalkan untuk penggunaan dalam enkripsi dan dekripsi data.

2. Pengujian Integritas Data yaitu untuk memastikan bahwa data yang didekripsi sama dengan data asli yang dienkripsi. Salah satu metode yang untuk verifikasi integritas data yaitu HMAC (Hash-Based Message Authentication Code). HMAC yang merupakan kunci kriptografi dan fungsi hash untuk membangun kode autentikasi . Pada pengujian integritas data data dienkripsi menggunakan AES-256-CBC dan kemudian **HMAC** dihasilkan dari data terenkripsi. Data bersama dengan HMAC dikirimkan ke penerima. Penerima kemudian menerima data dan melakukan verifikasi integritas dengan membandingkan HMAC yang diterima dengan HMAC yang dihasilkan dari data terenkripsi. Jika kedua HMAC cocok, integritas data dianggap terjamin. Berikut adalah cuplikan kode PHP penambahan HMAC.

e-ISSN: 2686-6382

Tabel 3. Cuplikan Kode PHP Pengujian Integritas Data

integritas Data			
Kode PHP	Ket		
function	Fungsi		
generateHMAC(\$data,	untuk		
\$key) {	menghas		
return	ilkan		
hash_hmac('sha256', \$data,	HMAC		
\$key);			
}			
\$expectedHMAC =	Verifikas		
generateHMAC(\$received	i		
EncryptedData,	Integrita		
\$encryptionKey);	s Data		
if (\$receivedHMAC ===			
<pre>\$expectedHMAC) {</pre>			
return "Integritas data			
terjamin. Data diterima			
dengan aman.";			
} else {			
return "Integritas data			
tidak terjamin. Data			
mungkin dimanipulasi atau			
rusak selama transmisi.";			
}			

Setelah *script* dijalankan maka server akan bertindak sebagai penerima yang memverifikasi integritas data yang dikirimkan oleh klien. Dengan demikian, server memisahkan HMACdari data terenkripsi, menghasilkan *HMAC* baru dari data terenkripsi menggunakan kunci yang sama, dan membandingkan dua HMAC tersebut untuk memastikan integritas data. Berdasarkan pengujian tersebut output yang dihasilkan berupa pesan "Integritas data terjamin. Data diterima dengan aman". Hasil tersebut berarti menunjukan integritas data terjaga selama transmisi antara klien dan server. Hal ini menunjukkan bahwa data yang dienkripsi oleh klien dan dikirim ke server tetap utuh tanpa mengalami perubahan atau kerusakan.

E. Evaluasi dan Analisis

Hasil pengujian menunjukkan bahwa sistem yang baru memenuhi kebutuhan keamanan dan performa. Dengan penerapan enkripsi AES-256-CBC, data yang dienkripsi dan didekripsi tetap terjaga integritasnya, dibuktikan melalui penggunaan HMAC. Pengujian performa menunjukkan bahwa waktu enkripsi dan dekripsi tetap dalam batas yang dapat diterima meskipun ada variasi panjang data dan iterasi *login*.

Analisis perbandingan antara sistem sebelum dan setelah penerapan enkripsi AES-256-CBC menunjukkan peningkatan signifikan dalam aspek keamanan. Data yang dikirim dan diterima menjadi lebih aman dari potensi penyusupan dan modifikasi. Waktu proses yang sedikit bertambah masih dalam batas toleransi dan tidak mempengaruhi pengalaman pengguna secara signifikan.

KESIMPULAN

Penerapan enkripsi AES-256-CBC pada sistem registrasi dan *login* di Toko Ilham Banjar meningkatkan keamanan berhasil pengguna dengan mengatasi kelemahan pengiriman dan penyimpanan data dalam bentuk *plaintext*. Pengujian menunjukkan peningkatan waktu enkripsi dan dekripsi yang tetap dalam batas yang dapat diterima, sementara penggunaan HMAC memastikan integritas data selama transmisi. Sistem baru setelah menerapkan AES-256-CBC efektif melindungi data sensitif pengguna tanpa mengorbankan performa yang signifikan. Penelitian berikutnya dapat membandingkan AES-256-CBC dengan metode enkripsi lain seperti RSA, ChaCha20, Twofish, dan Blowfish untuk menentukan algoritma terbaik

berdasarkan efisiensi dan keamanan. Selain itu, pengujian kinerja pada berbagai lingkungan komputasi dapat memberikan wawasan tambahan tentang dampaknya terhadap performa dan keamanan sistem enkripsi.

e-ISSN: 2686-6382

DAFTAR PUSTAKA

Afsari, Melani, Dadang Iskandar Mulyana, Alfiani Damaiyanti, and Naini Sa'adah. 2022. "Implementasi Mode Operasi Kombinasi Cipher Block Chaining Dan Metode LSB-1 Pada Pengamanan Data Text." Jurnal Pendidikan Sains dan Komputer 2(01): 70–82.

Andriyanto, Muhammad Riyan, and Pristi Sukmasetya. 2022. "Penerapan Algoritma Advanced Encryption Standard (AES) Untuk Keamanan Data Transaksi Pada Sistem E-Marketplace." Journal of Computer System and Informatics (JoSYC) 4(1): 179–87.

Dalimunthe, Syabdan, Joeharsyah Reza, and Asep Marzuki. 2022. "The Model for Storing Tokens in Local Storage (Cookies) Using Json Web Token (Jwt) With Hmac (Hash-Based Message Authentication Code) in E-Learning Systems." Journal of Applied Engineering and Technological Science 3(2): 149–55.

Mustika, Laila. 2020. "Implementasi Algoritma AES Untuk Pengamanan Login Dan Data Customer Pada E-Commerce Berbasis Web." *JURIKOM* (*Jurnal Riset Komputer*) 7(1): 148.

Permana, Aji, and Elan Jaelani. 2020. "Implementasi Algoritma AES 128 Bit Sebagai Pengaman Teks Di Aplikasi Note Berbasis Android." *JEJARING: Jurnal Teknologi dan Manajemen Informatika* 5(2): 9–17.

Putra, Yendi, Y Yuhandri, and S Sumijan. 2021. "Meningkatkan Keamanan Web Menggunakan Algoritma Advanced Encryption Standard (AES) Terhadap Seragan Cross Site Scripting." *Jurnal* Sistim Informasi dan Teknologi 3: 56-63.

Rachmat, Imam Fauzy Muldani. 2022. "Perancangan Mobile Commerce Berbasis Android Menggunakan Metode Rational Unified Process (Studi Kasus:TOKO ILHAM BANJAR)." IPSIKOM 10(2): 34–43.

— 2023. "IMPLEMENTASI METODE RAD PADA PERANCANGAN SISTEM INFORMASI PELAYANANJASA CUCI MOTOR DAN MOBIL BERBASIS WEB(STUDI KASUS:PRIMA WASH)." IPSIKOM 11(2).

Sati, Ardiansyah Tria, Dimas Tri Aditya, Nabila

Latifah Azzahra, and Roeslan Djutalov. 2023. "Perancangan Sistem Informasi Keuangan Peninggaran Raya (OPERA) Berbasis Dekstop Dengan SE & Java Mysql Menggunakan Metode Research and Development (RND)." JORAPI: Journal of Research and Publication 196–200. Innovation 1(2): https://jurnal.portalpublikasi.id/index. php/JORAPI/index.

e-ISSN: 2686-6382